NC STATE

Chemistry of Life Training Program

Program Executive Committee: Joshua Pierce (COS, PI); Gavin Williams (COS, Co-I); Yevgeny Brudno (COE); Jane Lubisher (COS); Melanie Simpson (CALS); Casey Theriot (CVM)

Program Internal Advisory Committee: Robert Kelly (BIT/COE); David Muddiman (METRIC/COS); Sid Thakur (Global Health/CVM); Fred Gould (GGI/CALS); Jorge Piedrahita (CMI/CVM); Hernan Navarro (BRITE/NC Central)

Program Overview: The Chemistry of Life Training Program (CLTP) aims to propel research at the Chemistry-Life Science interface through the creation of a focused graduate student training program that bridges Chemistry and Biochemistry with Life Science researchers across NC State's campus in collaboration with CMI. The students trained in this program will emerge with a unique training experience underpinned with chemical knowledge but focused on translational problems in the life sciences.

Specific Training Goals:

- To provide trainees with a solid curriculum in chemical biology and the life sciences, creating an integrated and unique look at fundamental chemistry in biological systems and translational science.
- To provide trainees with outstanding research training and mentoring experiences.
- To provide trainees with hands on mentoring of an undergraduate in a team-science project.
- To provide trainees with access and instruction in the use of cutting-edge research tools.
- To provide trainees with exposure to the international research community at the chemistry:biology interface through seminars and workshops.
- To provide professional development opportunities through travel support, fellowship development support and teaching experience.

Recruitment/Selection: Broad advertisement of the program will be conducted, with interested students directed to apply to the respective graduate program. Prospective students are selected by the CLTP executive committee through nominations from admissions committees, faculty of participating graduate programs, or direct student applications.

Year 1: Selected students will enter a participating graduate program and will enroll in the core "Chemistry of Life" course (CH795) in the Fall and a "Chemistry of Life" laboratory course in the Spring (BIT510-CLP). Students will select other courses from a menu of CLTP-selected courses or other graduate program courses in consultation with CLTP leadership and home graduate programs (this will vary based on the students interest areas in the life sciences). In the fall semester the students will rotate in 3 research labs and will select a primary research mentor and a faculty co-mentor (open to all mentors in all participating departments) by December 5th in consultation with the program director and faculty. In the spring semester the students will work with a chosen primary and secondary mentor to develop a research proposal that is a collaborative project between these labs with a requirement of a bridge between chemistry and the life sciences. These proposals will be reviewed by the executive committee and adjustments made as necessary in consultation with faculty - this project will serve as the initial thesis project for the trainee. Note that these projects do not require 50:50 involvement, but only the clear involvement of a complementary research partner working on problems in the life sciences or chemistry as appropriate. Ethics training will be conducted in this spring semester.

Draft Document Chemistry of Life Training Program

Year 2: Students continue in funded positions in the CLTP, working in their primary lab and taking any coursework required for their degree program. The students will meet bi-monthly with the program leadership to discuss their progress. At the end of this year students will participate in the annual symposium by presenting a poster. As part of this year, in collaboration with the Comparative Medicine Institute, CLTP scholars undertake one on one hands-on mentoring of an undergraduate in the laboratory. In the Fall, CLTP scholars will be required to develop an interdisciplinary proposal related to their thesis topic but targeted at training an undergraduate student (competitively selected though an existing CMI program). These proposals will be vetted by the executive committee to make sure they meet the goals of the training grant. In the Spring, a Special Topics course focused on mentoring will be required so that all participants, both undergraduate and graduate students, can meet to develop professional skills including mentoring and communication skills, poster preparation, preparing slides for presentation and best methods of interdisciplinary science communication. It will also serve as a way for the program leadership to monitor the progress of the students to ensure that both graduate and undergraduate students are benefitting from the experience. In addition, the undergraduate students will be expected to start training in the laboratory under the direction of the CLTP scholar. This will allow the undergraduate to develop the skills required to fully contribute to the research during the summer months. At the end of this year CLTP trainees will participate in the CLTP annual symposium by presenting an oral talk and will be supported to travel to a major scientific conference to present their first 2 years of work.

Years 3 - 5: Students will move into funded RA positions in the mentors lab and continue to participate in seminars and professional development activities though the CLTP program. Students will complete their preliminary exam during the first or second second semester of their 3rd year. Over these 3 years, the students will meet with their advisory committee every 6 months to provide the committee an opportunity to evaluate the research accomplished and to get the committee's input on further experimentation and approval to schedule his/her dissertation defense. The policies for each student will be set by their home graduate program.

Broader Benefit to Other Students: students not directly participating in this program will benefit through the new courses developed, the seminars and workshops held as part of the program and the increased support for research at the chemistry-life science interface. All aspects of this program will be open to other graduate students in the participating programs.

Expected Student Outcomes:

- Increased technical proficiency and understanding of the molecular underpinnings of biology.
- Increased research rigor and reproducibility though training and mentorship.
- Improved PhD outcomes, research productivity and educational/professional experiences in line with modern student expectations.
- Increased community engagement and networking, leading to improved job placement.
- Improved mentoring and teaching skills translatable to their future careers.

Expected Institutional Outcomes:

- Substantially increased number of collaborative research proposals and long-term collaborations.
- Improved quality of incoming graduate students and increased attraction/retention of top faculty.
- Strong bridges between colleges and departments, tied together through the molecular sciences.

Multi-Disciplinary Research and Training at the Chemistry - Life Sciences Interface